|
公司基本資料信息
|
這就意味著當(dāng)溫度升高,能量從W0→W1→W2→W3→W4 時(shí),其間距 (振幅中心位置)將由
R0→R1→R2→R3→R4。也就是說(shuō),原子間距離將隨溫度的升高而增加,即產(chǎn)生熱膨脹。另
一方面,空穴的產(chǎn)生也是物體膨脹的原因之一。由于能量起伏,一些原子則可能越過(guò)勢(shì)壘跑
到原子之間的間隙中或金屬表面,而失去大量能量,在新的位置上作微小振動(dòng) (圖13)。
有機(jī)會(huì)獲得能量,又可以跑到新的位置上。如此下去,它可以在整個(gè)晶體中 “游動(dòng)”,這個(gè)
過(guò)程稱為內(nèi)蒸發(fā)。原子離開(kāi)點(diǎn)陣后,留下了自由點(diǎn)陣———空穴。
如果因鑄件斷面溫度場(chǎng)較平坦 [圖134(a)],或合金的結(jié)晶溫度范圍很寬 [圖134
(b)],鑄件凝固的某一段時(shí)間內(nèi),其凝固區(qū)域在某時(shí)刻貫穿整個(gè)鑄件斷面時(shí),則在凝固區(qū)
域里既有已結(jié)晶的晶體也有未凝固的液體,這種情況為 “體積凝固方式”,或稱 “糊狀凝固
方式”。
如果合金的結(jié)晶溫度范圍較窄 [圖135(a)],或者鑄件斷面的溫度梯度較大 [圖135
圖135 “中間凝固方式”示意圖
(b)],鑄件斷面上的凝固區(qū)域?qū)挾冉橛谇?/p>
二者之間時(shí),則屬于 “中間凝固方式”。
凝固區(qū)域的寬度可以根據(jù)凝固動(dòng)態(tài)曲
線上的 “液相邊界”與 “固相邊界”之間
的縱向距離直接判斷。因此,這個(gè)距離的
大小是劃分凝固方式的一個(gè)準(zhǔn)則。如果兩
條曲線重合在一起———恒溫下結(jié)晶的金屬,
或者其間距很小,則趨向于逐層凝固方式。
因?yàn)榭昭?span style='line-height:1.5;'>數(shù)目的增加不可能是突變的。因此,對(duì)于這種突變,應(yīng)當(dāng)理解為金屬已熔化,已由固態(tài)變?yōu)?/span>
液態(tài),發(fā)生狀態(tài)改變?cè)斐傻?。從圖11可以看出,假設(shè)在熔點(diǎn)附近原子間距達(dá)到了R1,原
子具有很高的能量,很容易超過(guò)勢(shì)壘而離位。但是在相鄰原子最引力作用下,仍然要向平
衡位置運(yùn)動(dòng)。雖然此時(shí)離位原子和空穴大為增加,金屬仍表現(xiàn)為固體性質(zhì)。若此時(shí)從外界供
給足夠的能量———熔化潛熱,使原子間距離超過(guò)R1,原子間的引力急劇減小,從而造成原
子結(jié)合鍵突然破壞,金屬則從固態(tài)進(jìn)入熔化狀態(tài)。