三、鑄件溫度場的測定及動態(tài)凝固曲線
鑄件溫度場測定方法的示意圖如圖129所示。將一組熱電偶的熱端固定在型腔中 (如
鑄型中)的不同位置,利用多點自動記錄電子電位計 (或其他自動記錄裝置)作為溫度測量
和記錄裝置,即可記錄自金屬液注入型腔起至任意時刻鑄件斷面上各測溫點的溫度時間曲
52
線,如圖130(a)所示。根據(jù)該曲線可繪制
出鑄件斷面上不同時刻的溫度場 [圖130
(b)]和鑄件的凝固動態(tài)曲線 [圖131(b)]。
鑄件溫度場的繪制方法是:以溫度為縱
坐標,以離開鑄件表面向中心的距離為橫坐
標,將圖130(a)中同一時刻各測溫點的溫
度值分別標注在圖130(b)的相應點上,連
接各標注點即得到該時刻的溫度場。以此類
推,則可繪制出各時刻鑄件斷面上的溫度場。
還可以把固液部分劃分為兩個
帶。在右邊的帶里,晶體已經(jīng)連成骨架,但是液體
還能在其間移動。在左邊的帶里,因為已接近固相
線溫度,固相占絕大部分,并已連結成為牢固的晶
體骨架,存在于骨架之間的少量液體被分割成一個
個互不溝通的小 “溶池”(圖中的黑點)。當這些小
溶池進行凝固而發(fā)生體積收縮時,得不到液體的補
充。固液部分中兩個帶的邊界叫 “補縮邊界”。以
上是某一瞬間的凝固情景。在鑄件的凝固過程中,凝固區(qū)域按動態(tài)曲線所示的規(guī)律向鑄件中心推進。
表明液體的原子間距接近固體,在熔點附近其系統(tǒng)的混亂度只是稍大于
固體而遠小于氣體的混亂度。表12為一些金屬的熔化潛熱和汽化潛熱。如果說汽化潛熱
(固→氣)是使原子間的結合鍵全部破壞所需的能量,則熔化潛熱只有汽化潛熱的3%~7%,
即固→液時,原子的結合鍵只破壞了百分之幾。因此,可以認為液態(tài)和固態(tài)的結構是相似
的,金屬的熔化并不是原子間結合鍵的全部破壞,液體金屬內原子仍然具有一定的規(guī)律性,
特別是在金屬過熱度不太高 (一般高于熔點100~300℃)的條件下更是如此。需要指出的
是,在接近汽化點時,液體與氣體的結構往往難以分辨,說明此時液體的結構更接近于
氣體。