圖5 矩形介質(zhì)角點(diǎn)的B值與切面長(zhǎng)寬比的關(guān)系曲線圖5表示矩形介質(zhì)角點(diǎn)的 B值與介質(zhì)切面長(zhǎng)寬比關(guān)系。由圖可見,角點(diǎn)上的與介質(zhì)切面長(zhǎng)寬比基本呈線性關(guān)系。長(zhǎng)寬比越大,越大。當(dāng) B0 一定時(shí),欲到大的磁捕集力需用長(zhǎng)寬大的介質(zhì);因?yàn)榻橘|(zhì)切面長(zhǎng)比增大時(shí),內(nèi)部退磁場(chǎng)減,從而使介質(zhì)磁化增強(qiáng)。圖6表示在 B0方向距介表面不同距離時(shí)各點(diǎn)磁場(chǎng)力BydBydy(取網(wǎng)格線i=62上點(diǎn)的BydBydy為代表)的變化。隨離介質(zhì)表面距離的增大磁場(chǎng)磁力先是急劇下降,而后變化緩。L/W越大,在磁場(chǎng)中一定點(diǎn)所產(chǎn)生的磁場(chǎng)磁力越大,L/W=7,其介質(zhì)表面的磁場(chǎng)磁力是L/W=1時(shí)的4.7倍。
對(duì)于矩形鋼毛,當(dāng)將其軸向垂直于磁場(chǎng)方向置于磁場(chǎng)中并研
究其中間區(qū)段的磁場(chǎng)特性時(shí),可以忽略其兩端的邊緣效應(yīng)而將問
題理想化為兩維場(chǎng)進(jìn)行研究。
有限差分法原則上是用于求解閉合場(chǎng)域內(nèi)函數(shù)數(shù)值解的方
法
[4]
。由于鋼毛對(duì)周圍磁場(chǎng)的影響從理論上說可涉及無窮遠(yuǎn),因
而所論場(chǎng)域應(yīng)是無窮大的非閉合場(chǎng)域;為了對(duì)所研究的問題進(jìn)行
有限差分運(yùn)算,須先合理地給定閉合邊界并確定邊界條件。
圖1 場(chǎng)域邊界確定圖
現(xiàn)以單絲介質(zhì)為例進(jìn)行研究。
對(duì)于圖 1所示的單絲介質(zhì),abcd
為其橫切面,在其周圍對(duì)稱地取
定足夠大的場(chǎng)域邊界 ABCD,使磁
化后的 abcd對(duì)周界 ABCD及其以
外區(qū)域的影響變得很小以致可以
忽略。此時(shí),ABCD周界上及其外
部區(qū)域的磁場(chǎng)已接近均勻的背景
磁場(chǎng) B0。于是,周界 ABCD上的
邊界條件可分段給出為
(3)分散劑與顆粒生成絡(luò)合物,被絡(luò)合物層包裹的顆粒之
間,及這些顆粒與溶液中其他絡(luò)合物之間產(chǎn)生同性排斥。
例如,利用聚酰胺合成的聚合物可對(duì)輝銅礦進(jìn)行選擇性分
散
[8]
,其作用機(jī)理是其與 Cu
2+
生成了穩(wěn)定的選擇性絡(luò)合物的聚
合物,包有絡(luò)合物的聚合物層的顆粒之間,以及這種顆粒與溶液
中的其他絡(luò)合物之間,以及這種顆粒與溶液中的其他絡(luò)合物之間
產(chǎn)生電荷排斥能力。
(4)分散劑的分子或離子對(duì)顆粒選擇性吸附;吸附后產(chǎn)生水
化膜效應(yīng)使顆粒分散。
水玻璃對(duì)分散菱錳礦的機(jī)理即是依靠菱錳礦對(duì) HSiO
-
3 選擇
性吸附,吸附后產(chǎn)生親水膜故可穩(wěn)定分散。