表明液體的原子間距接近固體,在熔點附近其系統(tǒng)的混亂度只是稍大于
固體而遠(yuǎn)小于氣體的混亂度。表12為一些金屬的熔化潛熱和汽化潛熱。如果說汽化潛熱
(固→氣)是使原子間的結(jié)合鍵全部破壞所需的能量,則熔化潛熱只有汽化潛熱的3%~7%,
即固→液時,原子的結(jié)合鍵只破壞了百分之幾。因此,可以認(rèn)為液態(tài)和固態(tài)的結(jié)構(gòu)是相似
的,金屬的熔化并不是原子間結(jié)合鍵的全部破壞,液體金屬內(nèi)原子仍然具有一定的規(guī)律性,
特別是在金屬過熱度不太高 (一般高于熔點100~300℃)的條件下更是如此。需要指出的
是,在接近汽化點時,液體與氣體的結(jié)構(gòu)往往難以分辨,說明此時液體的結(jié)構(gòu)更接近于
氣體。
一、液態(tài)金屬的結(jié)構(gòu)
人們對液態(tài)金屬結(jié)構(gòu)的認(rèn)識滯后于固體金屬,這是因為它是以液體這樣一個無序體系作
為研究對象。近年來,利用X射線、電子和中子衍射及同步輻射技術(shù)得到液態(tài)金屬及合金
直接的結(jié)構(gòu)信息,促進(jìn)了液體金屬物理研究的不斷深入。通過兩種方法可以研究金屬的液態(tài)
結(jié)構(gòu)。一種是間接方法,即通過固→液態(tài)、固→氣態(tài)轉(zhuǎn)變后一些物理性質(zhì)的變化判斷液態(tài)的
原子結(jié)合狀況,另一種是較為直接的方法,即通過液態(tài)金屬的X射線或中子線的結(jié)構(gòu)分析
研究液態(tài)的原子排列情況。在了解液態(tài)金屬的結(jié)構(gòu)之前,有必要對金屬晶體的原子結(jié)合、加
熱膨脹及熔化過程加以闡述。
對應(yīng)著漸次收縮的鑄型體積,鑄件的冷卻速度比平面部分要小。由此可以
推論,鑄型中被液態(tài)金屬三面包圍的突出部分、型芯以及靠近內(nèi)澆道附近的鑄型部分,由于
有大量金屬液通過,被加熱到很高溫度,吸熱能力顯著下降,相對應(yīng)的鑄件部分,其溫度場
就比較平坦。
二、不同界面熱阻條件下的溫度場
1鑄件在絕熱鑄型中凝固
砂型、石膏型、陶瓷型、熔模鑄造等鑄型材料的熱導(dǎo)率遠(yuǎn)小于凝固金屬的熱導(dǎo)率,可統(tǒng)
稱為絕熱鑄型。因此,在凝固傳熱中,金屬鑄件的溫度梯度比鑄型中的溫度梯度小得多。相
對而言,金屬中的溫度梯度可忽略不計。